Journal of Organometallic Chemistry, 266 (1984) 295-301 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

X-RAY CRYSTAL STRUCTURES OF (η⁵-CYCLOPENTADIENYL)-(η¹-CYMANTRENYL)IRON DICARBONYL AND (η⁵-CYCLOPENTADIENYL)-(η¹-CYMANTRENYL)(TRIPHENYLPHOSPHINE)IRON CARBONYL

A.S. BATSANOV and Yu.T. STRUCHKOV*

Nesmeyanov Institute of Organo-Element Compounds of the U.S.S.R. Academy of Sciences, 28 Vavilov Str., Moscow B-334 (U.S.S.R.)

(Received January 6th, 1984)

Summary

The complexes (OC)₃MnC₅H₄Fe(C₅H₅)(CO)L (L = CO and PPh₃) were studied by X-ray crystallography. The C₅H₄ moiety of cymantrenyl is an η^5 -ligand for Mn and an η^1 -ligand for the Fe atom, forming, with the latter, σ -bonds of normal length (2.001 and 1.99 Å, respectively).

Introduction

In the course of a structural investigation of cymantrenyl derivatives with a metallated π -cyclopentadienyl ring [1,2], we carried out an X-ray study of the title complexes I and II, prepared by Perevalova and coworkers [3,4].

Results and discussion

The molecular structures of I and II are shown in Figs. 1 and 2. The relevant bond distances and angles are listed in Tables 1 and 2 (the atomic numbering schemes in I and II are the same, except for the PPh₃ ligand).

0022-328X/84/\$03.00 © 1984 Elsevier Sequoia S.A.

Fig. 1. Molecular structure of I (projection on the mean plane of the Cp ring C(11)...C(15)).

In both complexes the iron atom is coordinated by a planar η^5 -C₅H₅ ligand (Cp), two two-electron donors (CO or phosphine) and a σ -bonded C(6) atom of the cymantrenyl moiety in a usual "piano stool" arrangement. The bond angles between the two-centre bonds at the Fe atom exhibit small deviations from the ideal value of 90°. Surprisingly, the replacement of a CO group by a bulky PPh₃ ligand in II even decreases these deviations.

Fig. 2. Molecular structure of II (projection on the mean plane of the Cp ring C(11)...C(15)). The hydrogen atoms are omitted.

Bond	I	II	Bond	I	II
Fe-P	_	2.201(5)	P-C(21)	_	1.85(2)
Fe-C(1)	1.745(7)	1.70(2)	P-C(31)	-	1.80(2)
Fe-C(2)	1.767(7)	-	P-C(41)	_	1.83(2)
Fe-C(6)	2.001(6)	1.99(1)	C(1)-O(1)	1.15(1)	1.20(2)
Fe-C(11)	2.110(7)	2.16(1)	C(2)-O(2)	1.14(1)	-
Fe-C(12)	2.102(8)	2.11(2)	C(3)-O(3)	1.15(1)	1.16(2)
Fe-C(13)	2.104(7)	2.13(2)	C(4)-O(4)	1.15(1)	1.23(2)
Fe-C(14)	2.091(9)	2.10(1)	C(5)-O(5)	1.15(1)	1.18(2)
Fe-C(15)	2.092(8)	2.08(2)	C(6)-C(7)	1.43(1)	1.44(2)
$Fe-Cp(2)^{a}$	1.730	1.73	C(7)C(8)	1.42(1)	1.37(3)
Mn-C(3)	1.790(8)	1.78(2)	C(8) - C(9)	1.39(1)	1.44(3)
Mn-C(4)	1.787(7)	1.70(2)	C(9)-C(10)	1.44(1)	1.45(3)
Mn-C(5)	1.792(8)	1.73(2)	C(10)-C(6)	1.43(1)	1.39(2)
Mn-C(6)	2.216(6)	2.25(2)	C(11)-C(12)	1.39(1)	1.40(2)
Mn-C(7)	2.144(7)	2.14(2)	C(12)-C(13)	1.40(1)	1.48(3)
Mn-C(8)	2.129(8)	2.16(2)	C(13)-C(14)	1.39(1)	1.42(2)
Mn-C(9)	2.130(8)	2.13(2)	C(14)-C(15)	1.40(1)	1.50(3)
Mn-C(10)	2.155(7)	2.16(2)	C(15)-C(11)	1.41(1)	1.39(2)
$Mn-Cp(1)^{a}$	1.783	1.80	C-C(Ph), average	-	1,38(5)

BOND DISTANCES (Å) IN THE STRUCTURES OF I AND II

^a Cp(1) and Cp(2) are the centroids of the C(6)...C(10) and C(11)...C(15) cyclopentadienyl rings, respectively.

The Fe-C(6) σ -bond lengths in I (2.001(6) Å) and II (1.99(1) Å) are essentially equal. According to Churchill [5], the M-C(sp^2) bonds (M = transition metal) with the unsaturated ligand should be longer if the latter acts as a π,σ -bridge. In this case

TABLE 2

TABLE 1

BOND	ANGL	ES (°)	IN I	AND	IJ
------	------	--------	------	-----	----

Angle	I	11	Angle	I	II
C(1)FeX ^a	94.2(3)	90.7(6)	FeC(1)O(1)	178.9(7)	177(1)
C(1)FeC(6)	90.8(3)	92.8(7)	FeC(2)O(2)	179.6(7)	-
C(1)FeCp(2)	124.2	125.5	MnC(3)O(3)	178.1(7)	177(2)
XFeC(6)	86.8(3)	90.3(4)	MnC(4)O(4)	178.5(7)	173(2)
XFeCp(2)	125.7	124.7	MnC(5)O(5)	178.5(7)	176(2)
C(6)FeCp(2)	124.5	122.8	FeC(6)C(7)	126.3(5)	129(1)
C(3)MnC(4)	91.3(4)	93.9(9)	FeC(6)C(10)	127.4(5)	127(1)
C(3)MnC(5)	92.3(4)	90.6(8)	C(7)C(6)C(10)	106.1(6)	104(1)
C(3)MnCp(1)	124.8	122.4	C(6)C(7)C(8)	109.3(6)	110(1)
C(4)MnC(5)	92.8(4)	94.9(9)	C(7)C(8)C(9)	108.3(7)	111(2)
C(4)MnCp(1)	123.4	121.8	C(8)C(9)C(10)	107.8(7)	101(2)
C(5)MnCp(1)	123.1	124.9	C(9)C(10)C(6)	108.4(6)	114(1)
FePC(21)	-	112.3(5)	C(12)C(11)C(15)	108.0(7)	105(1)
FePC(31)	~	116.0(5)	C(11)C(12)C(13)	108.6(7)	112(1)
FePC(41)		116.8(5)	C(12)C(13)C(14)	107.3(8)	107(1)
C(21)PC(31)		103.0(7)	C(13)C(14)C(15)	109.0(8)	104(1)
C(21)PC(41)		106.5(7)	C(14)C(15)C(11)	107.0(8)	113(1)
C(31)PC(41)	-	100.7(7)			

^a X = C(2) in I, and P in II.

the p-orbital of $C(sp^2)$ is involved in the π -interaction with the d-orbitals of the other metal atom, hence its interaction with M (responsible for the contraction of σ -bonds $M-C(sp^2)$ vs. $M-C(sp^3)$) is weakened. However, in disagreement with these considerations, the Fe-C σ -bond distances in I and II are close to the value most common for terminal unsaturated ligands (1.98 Å), i.e. they are much shorter than the Fe-C(sp^3) bond distances (ca. 2.11 Å) [6]. In the complex (PhNCH₂-C₆H₄)Fe₃(CO)₈ with an $\eta^6: \eta^1$ -bridging benzene ring, the Fe-C(benzene) σ -bond is still shorter (1.969(6) Å). This is probably due to an increase in bond order [7].

The geometry of the cymantrenyl moiety in I and II is similar to that observed in cymantrene [8,9], but the Mn atom is further away from C(6) (bonded to Fe) than from the other ring carbons. Thus, the Mn-C(6) distances are 2.216(6) Å in I and 2.25(2) Å in II vs. the average of the other four Mn-C(Cp) distances, which are equal to 2.14(1) and 2.15(2) Å, respectively. Such non-equivalence is not observed in cymantrenyl derivatives of non-transition metals, viz. Sn and Bi [1,2]. The C(6)...C(10)-cyclopentadienyl ring is planar, the iron atom is tilted by 0.25 Å (in I) and 0.19 Å (in II) out of its plane to the side opposite to Mn. This tilting and the large Fe...Mn distances (3.861(2) Å in I, 3.852(3) Å in II) indicate the absence of metal-metal bonding interaction.

The differences in the bond distances and angles between I and II are not statistically significant. Conformational differences due to the replacement of CO by the bulky PPh₃ ligand are more pronounced. Thus the dihedral angle between the planes of the Cp rings is 81.3° in I vs. 66° in II. The orientation of the Mn(CO)₃ moiety relative to the Cp ring is also changed. In I, the carbonyl group atom C(3) is, in fact, eclipsed with C(6), the C(6)-Cp(1)-Mn-C(3) torsion angle being 1.4° (Cp(1) is the centroid of the Cp ring C(6)...C(10)). Such a conformation is generally uncommon for derivatives of cymantrene [10] and its analogue pyrrolyltricarbonyl-manganese [11] with bulky substituents in the η^5 -ring. More often these derivatives exhibit a staggered conformation of CO groups with respect to the substituent-carrying atom of the ring. The unusual conformation of I is probably due to crystal packing. In II, the torsion angle of -26° for C(6)-Cp(1)-Mn-C(3) corresponds to a skew conformation.

The geometry of the PPh₃ ligand in II is unexceptional. All the phenyl rings are planar, but the P-C(Ph) bonds are bent out of their planes by 7.5, 4.4 and 4.8° (for the C(21)...C(26), C(31)...C(36) and C(41)...C(46) rings, respectively).

The intermolecular distances in the structures of I and II are consistent with Van der Waals interactions [12], with the exception of a single, shortened contact C(8)...C(8)(1-x, -y, 1-z) of 3.25(1) Å in the structure of I. In both I and II there are some short intramolecular (non-bonding) contacts, mainly due to overcrowding in the coordination sphere of the iron atoms, viz. C(1)...C(3), 3.33(1), C(1)...C(7) 3.04(1), C(2)...C(7) 3.16(1), C(10)...C(15) 3.29(1) Å in I; C(1)...C(7) 3.04(3), C(10)...C(11) 3.16(3), C(7)...C(41) 3.24(3) Å in II.

Experimental

X-Ray experiments were performed with a Syntex P2₁ four-circle autodiffractometer at room temperature, using graphite-monochromated Mo- K_{α} radiation. Calculations were carried out with an Eclipse S/200 computer using INEXTL programs [13]. The structure of I was solved by a heavy atom method; the structure of II by a

	1	<u> </u>	II
Symmetry	Monoclinic		Monoclinic
a (Å)	8.592(2)		10.783(2)
b (Å)	13.521(2)		14.294(4)
c (Å)	12.481(3)		18.105(4)
β(°)	94.92(2)		92.77(2)
$V(\dot{A}^3)$	1444.6(9)		2788 (2)
d_{meas} (flotation) (g cm ⁻³)	1.74		1.46
d_{calcd} (g cm ⁻³)	1.75		1.46
Z	4		4
Space group	$P2_1/c$		$P2_1/c$
Scan technique	.,	$\theta/2\theta$, $2\theta_{\rm max} = 50^{\circ}$	•
No. of reflections $(I > 2\sigma(I))$	1546		2053
Weighting scheme		$W = [\sigma_F^2 + (k F_0])^2]^{-1}$	
k v v v v v v v v v v v v v v v v v v v	0.01		0.03
R	0.057		0.098
R _w	0.045	_	0.117

CRYSTAL DATA AND EXPERIMENTAL DETAILS

TABLE 3

direct method using the MULTAN program. All non-hydrogen atoms in both I and II were refined by full matrix least-squares with anisotropic thermal factors. All the hydrogen atoms were placed in calculated positions and were included in the

TABLE 4	
ATOMIC COORDINATES (×10 ⁴) AND	B ^{eq} IN THE STRUCTURE OF I

Atom	x	у	Z	$B_{150}^{eq}(\text{\AA}^2)$
Fe	1032(1)	794(1)	2654(1)	2.00(3)
Mn	4795(1)	2265(1)	3485(1)	3.54(3)
O(1)	-133(6)	2342(4)	3977(4)	5.0(3)
O(2)	683(6)	- 769(4)	4219(4)	4.9(3)
O(3)	2482(7)	3516(4)	2252(5)	6.7(3)
O(4)	7226(6)	2950(4)	2139(5)	5.6(3)
O(5)	5495(8)	3796(5)	5127(5)	6.8(3)
C(1)	337(8)	1721(6)	3460(6)	3.3(3)
C(2)	815(8)	-153(5)	3604(6)	3.3(3)
C(3)	3367(9)	3020(6)	2745(7)	4.3(3)
C(4)	6286(8)	2682(5)	2679(6)	3.8(3)
C(5)	5221(9)	3208(6)	4475(7)	4.3(3)
C(6)	3200(8)	974(5)	3350(5)	2.9(3)
C(7)	3612(8)	1239(5)	4443(6)	3.5(3)
C(8)	5257(9)	1147(6)	4671(7)	4.4(3)
C(9)	5899(8)	863(6)	3730(7)	4.7(3)
C(10)	4638(8)	767(6)	2895(6)	3.7(3)
C(11)	1700(9)	1169(7)	1117(6)	4.2(4)
C(12)	222(11)	1549(6)	1242(6)	4.6(4)
C(13)	- 789(8)	761(8)	1415(6)	4.8(4)
C(14)	81(13)	- 107(7)	1402(6)	5.5(4)
C(15)	1629(11)	131(7)	1231(6)	4.8(4)

Atom	<u>x</u>	У	Z	$B_{iso}(A^{-})$		
Fe	7506(2)	1621(2)	4655(1)	2.48(6)		
Mn	5071(3)	1546(2)	3029(1)	3.51(7)		
Р	8762(4)	2835(3)	4697(2)	2.7(1)		
O(1)	9210(13)	562(9)	3784(8)	7.1(5)		
O(3)	5804(14)	- 382(8)	3407(7)	6.6(5)		
O(4)	2546(14)	1388(11)	3536(9)	8.1(6)		
O(5)	4254(16)	900(12)	1556(7)	8.7(6)		
C(1)	8504(12)	1021(12)	4130(9)	3.8(5)		
C(3)	5516(17)	383(13)	3277(9)	4.7(6)		
C(4)	3634(18)	1443(13)	3368(10)	5.3(6)		
C(5)	4617(15)	1177(14)	2144(10)	4.8(6)		
C(6)	6588(14)	2155(10)	3775(7)	3.0(4)		
C(7)	6899(17)	2127(13)	3014(9)	4.9(6)		
C(8)	6112(17)	2698(14)	2602(9)	5.3(6)		
C(9)	5130(22)	3037(12)	3039(10)	5.3(7)		
C(10)	5520(16)	2696(11)	3765(9)	3.8(5)		
C(11)	5735(13)	1218(11)	5061(8)	3.3(5)		
C(12)	6562(16)	467(12)	5090(8)	4.5(5)		
C(13)	7683(19)	674(11)	5566(9)	4.2(6)		
C(14)	7555(20)	1610(13)	5815(8)	4.7(6)		
C(15)	6315(14)	1911(11)	5492(8)	3.5(5)		
C(21)	8221(15)	3769(10)	5308(8)	2.8(4)		
C(22)	7086(17)	4188(11)	5145(10)	4.4(5)		
C(23)	6590(17)	4808(15)	5639(11)	5.9(6)		
C(24)	7248(20)	4976(13)	6312(11)	6.1(7)		
C(25)	8331(21)	4581(14)	6468(11)	6.2(7)		
C(26)	8866(17)	3957(11)	5964(9)	4.4(6)		
C(31)	10321(13)	2617(11)	5055(8)	3.0(4)		
C(32)	10663(14)	1778(10)	5438(8)	3.1(4)		
C(33)	11818(17)	1660(12)	5765(9)	4.7(5)		
C(34)	12734(18)	2333(13)	5720(10)	4.8(6)		
C(35)	12347(21)	3142(12)	5319(11)	5.4(7)		
C(36)	11315(16)	3311(12)	5014(10)	4.4(5)		
C(41)	9068(16)	3394(11)	3813(8)	3.6(5)		
C(42)	8471(17)	4180(12)	3537(10)	4.8(6)		
C(43)	8696(22)	4472(14)	2810(10)	7.1(8)		
C(44)	9535(21)	4012(16)	2405(9)	7.1(8)		
C(45)	10146(24)	3240(15)	2669(10)	6.5(8)		
C(46)	9903(17)	2917(12)	3369(9)	4.0(5)		

TABLE 5 ATOMIC COORDINATES ($\times 10^4$) AND B_{125}^{cq} in the structure of II

refinement as fixed contributions. The crystal data of I and II and the experimental details are listed in Table 3; the atomic coordinates and $B_{iso}^{eq} = 1/3\Sigma_{ij}B_{ij}a_i^*a_j^*(a_ia_j)$ are given in Tables 4–6.

Acknowledgements

The authors are grateful to Prof. E.G. Perevalova and Dr. L.I. Leont'eva (Chemical Department, Moscow State University) for providing crystal samples.

Atom	x	у	z	Atom	x	у	z
Structure	1		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
H(7)	286	146	497	H(11)	265	156	97
H(8)	585	127	538	H(12)	7	227	121
H(9)	703	75	365	H(13)	- 193	81	153
H(10)	475	59	213	H(14)	- 33	- 79	150
				H(15)	251	35	120
Structure	11						
H(7)	759	175	281	H(25)	878	472	695
H(8)	621	286	207	H(26)	969	366	608
H(9)	438	341	288	H(32)	1004	126	547
H(10)	506	284	422	H(33)	1201	107	605
H(11)	491	125	479	H(34)	1359	226	595
H(12)	642	-14	482	H(35)	1299	364	528
H(13)	839	24	569	H(36)	1117	391	474
H(14)	816	198	613	H(42)	789	454	385
H(15)	594	254	558	H(43)	823	502	259
H(22)	662	404	467	H(44)	971	425	190
H(23)	578	513	552	H(45)	1076	291	236
H(24)	689	540	668	H(46)	1033	234	356

TABLE 6COORDINATES (×10³) OF THE HYDROGEN ATOMS

References

- 1 L.N. Zakharov, V.G. Andrianov, Yu.T. Struchkov, V.V. Sharutin and O.N. Suvorova, Koord. Khim., 6 (1980) 1104.
- 2 L.N. Zakharov, Yu.T. Struchkov, V.V. Sharutin and O.N. Suvorova, Koord. Khim., 6 (1980) 805.
- 3 A.N. Nesmeyanov, E.G. Perevalova, L.I. Leont'eva, S.A. Eremin and O.V. Grigor'eva, Izv. Akad. Nauk SSSR, Ser. Khim., (1974) 2645.
- 4 A.N. Nesmeyanov, E.G. Perevalova, L.I. Leont'eva and E.V. Shumilina, Izv. Akad. Nauk SSSR, Ser. Khim., (1977) 1142.
- 5 M.R. Churchill, Perspect. Struct. Chem., 3 (1973) 93.
- 6 C. Kruger, D.L. Barnett and D. Brauer, in The Organic Chemistry of Iron, Vol. 1, Academic Press, New York, 1978, pp. 1-112.
- 7 N.S. Nametkin, V.D. Tyurin, A.I. Nekhaev, Yu.P. Sobolev, M.G. Kondrat'eva, A.S. Batsanov and Yu.T. Struchkov, J. Organomet. Chem., 243 (1983) 323.
- 8 A.F. Berndt and R.E. Marsh, Acta Crystallogr., 16 (1963) 118.
- 9 P.J. Fitzpatrick, Y. Le Page, J. Sedman and I.S. Butler, Inorg. Chem., 20 (1981) 2852.
- 10 T.L. Khotsyanova, S.I. Kuznetsov, E.V. Bryukhova and Yu.V. Makarov, J. Organomet. Chem., 88 (1975) 351.
- 11 N.I. Pyshnograeva, V.N. Setkina, V.G. Andrianov, Yu.T. Struchkov and D.N. Kursanov, J. Organomet. Chem., 128 (1977) 381.
- 12 Yu.V. Zefirov and P.M. Zorkii, Zh. Strukt. Khim., 15 (1974) 118.
- 13 R.G. Gerr, A.I. Yanovskii and Yu.T. Struchkov, Kristallografiya, 28 (1983) 1029.